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Abstract

This paper approaches the non-destructive analysis of corrosion damage by testing and evaluat-
ing several image segmentation schemes for the detection of decay areas. The application test bed for
algorithmic evaluation considers stonework surfaces for corrosion damage. Each of the detection
approaches handles in a different way the background inhomogeneities. A semi-automated frame-
work for validating the algorithms’ performance is introduced. This framework guarantees reliable
and objective estimation of algorithms’ response, while also enabling informed experimental feed-
back for the design of improved segmentation algorithms. Further to elaborating on the robust
points of each segmentation approach, this work also studies the corrosion mechanisms. The latter
process involves investigation of the degradation state as reflected by the size of the decay areas and
their darkness. The derived assessments closely converge to assessments based on chemical analyses,
performed on the same stone surfaces.
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1. Introduction

The degradation phenomena encountered on stonework form an aspect of high impor-
tance nowadays. Several investigations were carried out with the aim of studying the fac-
tors, extent and phenomenology of stone decay [1]. In a polluted environment, the most
frequently observed decay phenomenon on stone surfaces is the formation of black crust
[2]. Black crust is a coating with color ranging from reddish-brown to brown-black
depending on the lithotype and the way of exposure to environmental agents. Analyses
of black crusts reveal gypsum, residual calcite, silicates, potassium nitrate, iron oxides,
mica flakes, quartz and numerous organic constituents in low concentration [3]. The thick-
ness of black crust ranges from 100 lm up to several mm; successive sub-layers can be dis-
criminated into the crust matrix, differing in texture and chemical composition. Small
white particles, of gypsum crystals and re-crystallized CaCO3, as well as unevenly distrib-
uted black carbonaceous particles, responsible for the coloration, were identified on the
body of black crust.

Black crust not only alters the aesthetic view of stonework, but also leads to further cor-
rosion due to catalyzing actions. Thus, the employment of chemical cleaning methods
becomes essential both for conserving the artwork and preventing further degradation
phenomena. A critical issue in the corrosion-damage estimation is the objective and accu-
rate segmentation of degraded areas. Several methodologies of corrosion-damage estima-
tion have been developed in recent years. The primary procedure is based on the ablation
of the examined stone material and a subsequent chemical analysis to reveal the extent and
types of degradation. However, this process is destructive to the material and increases the
stone exposure to weathering conditions. The implementation of non-destructive tech-
niques capable of providing reliable results concerning both the topology and extent of
degradation is currently an aspect under investigation.

Most of the research efforts relative extracting information from corroded areas on
artworks, are focused towards assessments of degradation effects on old paintings and less
on detecting corrosion damage on stonework. This is mainly due to the diversity of the
encountered corrosion effects (flaws, material loss, discoloration, black crusts, etc.) and
the lithotype variations. A non-destructive technique introduced by Moropoulou and
Avdelidis [4], assessed the corroded untreated, as well as the treated areas on stonework
via an infrared thermography screening system. An automated approach implemented
by Lebrun et al. [5], quantified corrosion damage through color alteration by comput-
ing the Euclidean distance in a (pseudo)-L*a*b* color space. Many investigations for accu-
rate geometric analysis of the decayed material surfaces have also been proposed using
topographical acquisition data. Gelli and Virulano [6] employed an automated approach
known as ‘‘Shape from Shading Method’’ to perform reconstruction of degraded stone
surfaces. Furthermore, methods for characterizing the stone structure and detecting
regions of material loss were developed in the study of Moltedo et al. [7], while Boukouv-
alas et al. [8] introduced computer vision techniques for the detection and classification
of mineral veins on ceramic tiles. Pappas and Pitas [9] employed image-processing
approaches with the objective of diagnosing corrosion defects on old paintings and
performing reconstruction of the digital image on the locations of degraded areas. The
way that corrosion damage affects the structural integrity of aerospace materials has also
been investigated. Many computer vision techniques have been developed to non-destruc-
tively detect decay areas on metals and to classify corrosion patterns according to their
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origin and type. An early attempt of segmenting degraded areas on metals was performed
in [10], where the decay effects are inspected by eddy currents and infrared thermography.
The information gathered is subsequently fused with the use of statistical and/or probabi-
listic algorithms. Another approach aiming at recognizing corroded areas on aerospace
materials and classifying them according to their type was introduced by Choi and Kim
[11]. A similar study reported in [12] is focused towards recognizing the various defects
encountered on a cold mill strip.

In this paper, we focus on the performance evaluation and the potential of several image
segmentation algorithms in correctly detecting and localizing decay effects. Previous perfor-
mance evaluation of segmentation algorithms has been largely based on manual tuning of
algorithms’ parameters. We present an automated approach for extracting the Ground
Truth Matrix (GT) of decay areas segmented by different algorithms and for evaluating
their performance. The use of multiple sets of images provides the test bed for detecting sig-
nificant performance differences among algorithms. Such an approach makes it possible to
objectively and reliably compare the performance of segmentation processes, while allows
for informed experimental feedback towards the design of improved algorithmic schemes.

Through the algorithms’ performance evaluation the role of experts is critical. The
experts pose the criteria for defining the algorithmic performance and comparing algo-
rithms in terms of their efficiency to provide reliable results of the decay topology and
extent. These criteria essentially determine the features of an appropriate segmentation
approach. Usually the expert’s opinion is absorbed in the process of Ground Truth Matrix
estimation. In this work, we consider the potential of a detector to segment all susceptible
areas (even those that do not correspond to decay effects) as indicative of its efficiency.
Such a response is considered preferable by the experts. Besides the comparison of several
algorithmic approaches, in this paper we investigate how exposure or even cleaning con-
ditions are reflected in the size and the relative intensities of the corroded areas (over the
background). This aspect is approached by using statistical tests to assess the significance
of discrepancies observed in the decay characteristics of the examined structures. These
tests also contribute in evaluating the efficiency of chemical cleaning and understanding
the procedures of decay evolution. The testing framework includes image data sets of
degraded stone surfaces screened by the fiber optics microscope (FOM) and digital cam-
era. The specific images used to assess the potential of the algorithmic schemes are selected
to reflect the decay phenomenology encountered on stonework.

Structuring the paper, we present in Section 2 the experimental setup, as well as the
requirements considered for effective segmentation. Section 3 presents the algorithms
tested and the details of the procedure developed for GT extraction. Moreover, it discusses
the statistical measures employed for evaluating the algorithmic results. The results of the
algorithmic testing along with the details of structural and cleaning effects on corroded
surfaces are presented in Section 4. Finally, Section 5 summarizes this work and discusses
directions of further required research efforts.

2. Experimental setup

2.1. Problem specification

The studied images represent degraded stone regions monitored via a FOM system and
a digital camera. The FOM images depict sheltered and unsheltered areas obtained from
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the columns of the National Archaeological Museum (Athens), while the digital camera
images represent a stone specimen depicting adjacent cleaned and uncleaned strips. The
FOM images are further subdivided into reedings and flutings, in order to study the dif-
ferent degradation and structural effects encountered on surfaces of different exposure to
weathering conditions. Thus, reedings represent areas more exposed to the rain and winds’
action and consequently the black crusts occurring on these areas tend to be thinner than
the corresponding crusts encountered on the adjacent flutings surfaces. Moreover, ree-
dings present flaws and granular texture due to the removal of stone grains through the
water’s fluency. On the other hand, unsheltered surfaces tend to develop more lamellar
texture and crusts thinner in thickness. The latter observation can be explained by taking
into account the water activity that results in removing the deposited materials. Further-
more, the discoloration of the unsheltered surfaces and the formation of reddish-brown or
brown-black strains are attributed to effects of dissolution of the substrate due to the
water’s action. We assess the severity of degradation in terms of the size of the detected
decay areas and the alteration of the relative (over the background) intensities on areas
of corrosion damage.

As it was previously discussed, this paper also aims at examining the effects of cleaning
interventions. The applied cleaning treatments on the FOM images include: (a) an ion-
exchange resin paste with deionized water (DS), (b) a biological paste (BP) comprising
1000 ml of deionized water, 50 g of (NH2)2CO, 20 ml of (CH2OH)2CHOH and approxi-
mately 800 g of sepiolite, and (c) a wet microblasting method (WMB) springing spherical
particles of calcium carbonate with diameter lower than 80 lm at a maximum function
pressure of 0.5 bar; the proportion of water and spherical particles of calcium carbonate
in the device’s commixture barrel was 3:1. In order to assess the cleaning performance,
chemical investigations with the aid of destructive techniques, such as Fourier transform
infrared spectroscopy (FTIR), scanning electron microscopy with energy dispersive X-ray
analysis (SEM-EDS) and X-ray diffraction analysis (XRD) were also performed on the
cleaned surfaces. The results of the chemical analyses are subsequently used as input to
the statistical tests in order to estimate the effectiveness of the cleaning methods in remov-
ing decay. The methods presented have been tested in 12 images of untreated surfaces,
seven images depicting stone regions cleaned by the DS method, five images representing
stone surfaces treated by the BP and seven WMB cleaned images.

Aiming at assessing the effectiveness of the segmentation algorithms in detecting vari-
ous types of corrosion defects we selected three representative images (two FOM images
and one digital camera image), where we also extracted the GTs. The images were selected
with the aid of the experts, to reflect the deterioration encountered in a variety of environ-
mental conditions. The chosen images correspond to sheltered and unsheltered untreated
flutings representing structures of different texture and decay extent. Furthermore, the
spatial arrangement of degradation particles was also considered for the selection of the
two FOM images.

The digital camera system is also recruited as to investigate the algorithms’ potential in
accurately segmenting decay areas on images at low feature resolution. The image screened
via this modality corresponds to a stone surface where adjacent strips of laser cleaned and
uncleaned areas occur. The cleaning process was conducted by a Nd:YAG laser system
used to partially remove the crust [13]. The energy fluency of the Nd:YAG laser was fixed
at 6.3 J/cm2. Throughout the cleaning process, some parameters of the laser pulses were



P. Kapsalas et al. / Corrosion Science 49 (2007) 4415–4442 4419
modified, resulting in the removal of crust layers differing in thickness. Each cleaned strip
was obtained by increasing the number of laser pulses per spot from one up to six; a 40%
area overlap was recorded between adjacent spots.

2.2. Principles and requirements for segmentation

The development of algorithmic approaches that can accurately detect the location and
structure of corroded areas aids the reliable assessment of decay phenomena. The presence
of noise in the images, as well as the inhomogeneity of the stone structure, leads to the
induction of false positive and false negative segmented spots. The presence of such spots
may alter the estimation of decay effects, so that the restriction (or even elimination) of
false segments is of high importance.

In order to design a detector that performs accurate localization of decay areas, the
peculiarities of the problem should be clearly identified as follows:

• The objects of interest are very small; they are visible as dark particles in the image.
• They often appear in an inhomogeneous background that reflects the structure of the

marble surface. The background structure may be darker in some parts of the image
than the decay particles on other parts. For this reason, a simple thresholding scheme
cannot be used for segmentation. The employed detector should take under consider-
ation the local characteristics of the image.

• Sub-areas that depict a non-uniformity of the underlying texture are more susceptible
to be decayed.

• Another problem is the usual low contrast between the objects of interest and the back-
ground. This contrast is sometimes comparable to noise contrast caused by the inhomo-
geneity of the stone structure. Due to the random growth of decay patterns, there is no
lower bound to their contrast over the background. Obviously, the aim should be to
design the segmentation process as sensitive as possible to the systematic variations
caused by deterioration patterns, while suppressing those random variations caused
by noise. This means that segmentation has to take dynamically into account the local
variations of background intensity.

In order to address the peculiarities of the desired segmentation process, an efficient spot
detector should consider the following specifications.

• It should be insensitive to large-scale intensity variations. These are characterized by
low spatial frequencies and are usually associated with the presence of mineral veins
or other features of the stone.

• As the size of the spots is approximately known but may vary, the detector should be
adaptable to an expected size but should not be too specific. The prior assumption
about the shape of the spots is that they are round resulting to an angular isotropic
operator. Thus segmented regions of linear or dot- shaped structure are not considered
as deterioration patterns and, they should be eliminated by the employment of appro-
priate morphological operators.

• Spots of high contrast should be detected even in areas of high noise level, whereas in
areas of low noise level spots of low contrast must also be detected.
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To provide robust segmentation results based on the above specifications, we imple-
mented and tested several algorithmic schemes that can be classified into different catego-
ries depending on the way they handle background inhomogeneities. The first step towards
the implementation of an efficient spot detector is to decouple the detection of useful infor-
mation from the background activity. This is achieved by the first algorithmic approach,
which employs a broadband high-pass filter to enhance the decay areas and remove the
general structure of the background. The segmentation process in this first approach is
conducted through a simple thresholding technique that sets a global threshold from
the statistical analysis of the entire image. The disability of such methods to eliminate
the induction of false positive and false negative spots leads to the employment of the next
category that uses adaptive thresholding schemes. Thus, we tested algorithmic approaches
that perform thresholding based on characteristics of the local background structure using
also some knowledge of the extent and spatial arrangement of decay patterns. All the
above methods, however, use information from the histogram of the sub-regions in order
to select an appropriate threshold. A fundamental limitation of such approaches is that
they completely ignore information regarding the spatial relations of intensity values. In
order to overcome this limitation, we also tested a local region growing segmentation
approach. The basic goal here is to select local thresholds dynamically, based on an iter-
ative evaluation of the labeling quality, achieved by each threshold value. At each itera-
tion, the initially selected area is grown according to a thresholding similarity predicate
aiming at producing compact areas, while avoiding the merging of different regions. In
an effort to further reduce the segmentation errors, introduced due to the local back-
ground variations, we also implemented a more elaborate growing scheme that uses prior
knowledge of the expected size of spots and the inter-spot distance. This procedure is quite
reliable in detecting spot locations even in low contrast ratio between the spot and its
background. However, the detected shape is distorted and the boundary of the individual
spots is smoothed. In order to address the effective shape detection of decay spots, we
tested a category of local morphological operators. This approach preserves the original
spot shape, at the price of more false positive spots and merged spots that should be sep-
arated. In order to exploit the strength of both concepts (accurate topology detection and
shape preservation), a morphological fusion algorithm was implemented, which expands
the areas detected by the band-pass filtering approach up to the size derived by the mor-
phological operators. These algorithms are briefly presented in the next section.
3. Segmentation procedures

3.1. Detection based on frequency selection and thresholding

In this section, we discuss segmentation approaches that involve frequency-selective
filtering followed by thresholding. Most algorithmic schemes employ high-pass filtering
to enhance the discernibility of discontinuities of the stone structure. The high-pass filter-
ing process removes the low frequency content of the image that mostly reflects back-
ground activity. Following the filtering processes, they extract the histogram of the
detail1 image as to determine appropriate thresholds. Other algorithmic schemes induce
1 Detail image is the image obtained through the frequency selection process.
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band-pass filtering accompanied by a dual thresholding scheme. Through this process, we
aim at maintaining patterns with specific frequency content while suppressing random
variations associated to noise artifacts.

3.1.1. High-pass filtering algorithm

Considering the small size of the deterioration particles, a low pass filter with a wide
kernel would be able to remove them, while conserving the general background of the
image. Conversely, a high pass filter may be used to detect such decay areas. A high pass
filtered image may be derived as the difference between the original and a low-pass filtered
version of the image as:

f 0ðx; yÞ ¼ f ðx; yÞ � Gr½f ðx; yÞ�

where f(x,y) is the original image and Gr[f(x,y)] and f 0(x,y) represent the low-pass and the
high-pass versions of the image, respectively. As low pass filter, a Gaussian filter with a wide
kernel can be employed. The parameters of the Gaussian filter are chosen to be suitable for
the detection of the objects of interest. The size r is chosen to be larger than the expected
size of the majority of decay patterns. Here r = 2.75 is chosen, implying that spatial vari-
ations at a scale larger than this are attenuated. The region of support of the Gaussian filter
is 21 · 21 pixels. This size is selected to preserve the extent of the expected deterioration pat-
terns. Subsequently, the high-pass filtered image is being thresholded in order to determine
decay areas. The procedure of evaluating the thresholds is based on the histogram. Thus,
the threshold values are determined according to the statistical Otsu approach [14].

3.1.2. Weighted difference of Gaussians (DoG) detector

The Difference of Gaussians Detector (DoG) employs a frequency selection process
that performs band-pass filtering of the original image as to enhance discontinuities
related to the presence of decay [15]. The entire approach consists of several steps. At first,
the original image f(x,y) is low-pass filtered using a Gaussian kernel with standard devi-
ation r equal to 4 pixels and its high-pass filtered version is obtained as:

f1ðx; yÞ ¼ f ðx; yÞ � G4½f ðx; yÞ� ð1Þ

The weighted difference of Gaussian filtering is based on the subtraction of one smoothed
version of the resulting image f1(x,y) from another version having a different degree of
smoothing. Two Gaussian kernels with different standard deviations are used to smooth
the high-pass filtered version of the image. The standard deviations of the Gaussian
kernels are chosen to reflect the dimension of the decay areas and their inter-particle dis-
tance. The detector operates by assigning a weight to the kernel of larger width. For the
segmentation of decay areas in our application we recruit the following form of DoG.

f2ðx; yÞ ¼ 0:8G6½f1ðx; yÞ� � G0:25½f1ðx; yÞ� ð2Þ

Subsequently, the standard deviation of the band-pass filtered image f2(x,y) is calculated
and an initial threshold equal to k1 times this standard deviation is applied. Then, the stan-
dard deviation is recalculated using only the pixels beyond the initial threshold. The final
threshold is set as k2 times the recalculated standard deviation. According to previous stud-
ies [16], k1 and k2 should belong in the range [1,3] if the standard deviation of the histogram
of f2(x,y) is larger than 1. In our application these constants are selected experimentally and
for the detection of black spots k1 and k2 are set to 2 and 3, respectively. As the Gaussian
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detector does not preserve the shape of the spots, this scheme provides reliable information
about the location of decayed areas but not their shape. A methodology of segmenting de-
cay patterns with their shape preserved is also implemented in this work. More specifically,
a morphological detector based on ‘bothat’ filtering followed by twin thresholding is em-
ployed along with the DoG detector [15].

The previous global thresholding methods do not take under consideration specific fea-
tures of the local background, thus inducing many false positive and false negative areas.
The implementation of neighbor-based segmentation procedures that employ thresholds
based on intensities of the neighboring pixels is more efficient in suppressing instances
of over-segmentation. The latter mainly occur due to the dynamically varying stone struc-
ture. In the subsequent sections, we introduce three approaches of neighborhood-based
segmentation that rely on stochastic hypotheses of the local intensity distributions.

3.2. Segmentation approaches based on local thresholds

Neighborhood-based threshold selection aims at exploiting local characteristics to
reduce the false positive and false negative segments. These methods operate on larger seg-
mented areas derived by global thresholding (results of algorithm in Section 3.1.1). After
labeling these initial ‘‘candidate’’ areas, the subsequent segmentation is performed via
employment of locally determined thresholds. The specific definition of label assignment
that we adopt is the same as used by Hoover et al. [17] based on eight-connectivity for
local label compactness.

For each label, the co-ordinates of the center of gravity are calculated and stored in a
structure. Subsequently, a window of size 61 · 61 pixels centered at each specific set of co-
ordinates is applied. The extent of the window is selected as to provide discernibility
between the locations of the decay areas and the stone structure. In each window sub-area
the histogram is extracted and thresholds are determined based on stochastic hypotheses
for the distribution of local intensities. We test three methods of threshold selection that
reflect different hypotheses regarding the local intensity distributions:

• Initially, we assume a normal distribution of local intensities. Thus, the mean and the
standard deviation are considered as representative measures of the intensities’ distribu-
tion. In this case, the threshold is determined via the mean and the standard deviation
values. All pixels that satisfy the equation p(i, j) 6 (Mean � 1.5 * s tandard_deviation)
are considered to comprise black spots.

• Another hypothesis on the intensities assumes non-parametric distribution. In this case,
the threshold depends upon the median and the quartiles levels. The procedure followed
to perform the Box Plot Thresholding involves extraction of the median, lower quartile
and upper quartile of gray levels. The threshold applied for the detection of black spots
is Th1 = Upper_Quartile � 1.5 * Inter_Quartile. All pixels that satisfy the condition
p(i, j) 6 Th1 correspond to decay areas.

• Finally, in the Robust Fit Thresholding approach we assume that the local background
intensities obey the normal distribution and a curve fitting approach is recruited to
extract outliers (non-background segments), which depart from that normal distribu-
tion. Thus, we first extract the distribution of gray levels in each sub-region defined
by the square window. Subsequently, a normal distribution is fit through robust t-fitting
as to avoid the effects of outliers. The robust fit function uses iteratively reweighed least
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squares algorithm and the weights at each iteration are calculated by applying the bi-
square function to the residuals from the previous iteration. This algorithm assigns
lower weights to points that do not fit well the histogram. Subsequently, the weights
derived from the above procedure are stored in a vector. While traversing the vector
from the head to the end element, the position of the first nonzero element corresponds
to the threshold denoted as Th2. All pixels with gray values lower than Th2 are detected
as pixels belonging to black particles.
3.3. Sub-region decomposition algorithm

The algorithmic scheme identified as ‘‘Sub-Region Decomposition Algorithm’’ also
involves frequency-selective filtering for the acquisition of the detail image [18]. The thres-
holding approach, though, is applied only to susceptible sub-regions of the image, which
are determined according to statistical properties of the intensity distribution. The applied
thresholds also stem from the local intensities.

Since black particles are small isolated regions, they produce outliers in the intensity
histogram of the detail image. Our segmentation problem can thus be reduced to that
of detecting outliers. The detail image is first divided into square non-overlapping regions
of extent 61 · 61 pixels; the dimensions are selected properly to provide sufficient discrim-
ination between the background and the decay areas. In each of the decomposed sub-
regions, the histogram is extracted and the Skewness and Kurtosis are computed as
measures of the asymmetry and impulsiveness of the distribution. For a random variable
X the Skewness is given by:

c3 ¼
E ðX � E½X �Þ3
h i

E½ðX � E½X �Þ2�
� �3

2

ð3Þ

and an estimate of the Skewness is obtained as:

ĉ3 ¼
PN

i¼1ðX i � mÞ3

ðN � 1Þr3
ð4Þ

where m and r indicate the estimates of mean and standard deviation over N observations
of Xi (i = 1, . . .,N). Skewness is a measure of the asymmetry of the data around the sample
mean.

Similarly, for a random variable X the Kurtosis is defined in terms of the tails of the
distribution as:

c4 ¼
E½ðX � E½X �Þ4�

E½ðX � E½X �Þ2�
� �2

ð5Þ

and the estimate of Kurtosis is given by:

ĉ4 ¼
PN

i¼1 Xi� mð Þ4

ðN � 1Þr4
� 3 ð6Þ

Kurtosis is a measure of how outlier prone a distribution is. If a region contains decay
areas then due to their impulsive nature the symmetry of the detail’s image histogram is
altered. In this case, it is also evident that the tails of the distribution are heavier and hence



4424 P. Kapsalas et al. / Corrosion Science 49 (2007) 4415–4442
the kurtosis assumes a quite high value. Therefore, the detection is performed by the fol-
lowing decision rule based on the Skewness and kurtosis values of the sub-regions’
histograms:

CðxÞ ¼
0 background if c3 6 T 1 or c4 6 T 2

1 decay spot if c3 > T 1 or c4 > T 2

�
ð7Þ

where T1 and T2 are experimentally determined thresholds. Once the sub-blocks contain-
ing the deterioration patterns are determined by the above test, the thresholding procedure
estimates the locations where decay areas prevail by calculating the lower quartile (Q1),
upper quartile (Q3) and inter-quartile range (denoted by Rf). Then, pixels with intensity
levels lower than Ql � kRf, k 2 [1.5,3] are assigned to degraded areas.

The algorithmic schemes discussed so far employ locally determined thresholds selected
semi-automatically, where the algorithm developer still needs to determine some of the
threshold parameters. A drawback of these approaches may be that they select thresholds
based on the distribution of intensities at each sub-region while discarding information
related to the spatial arrangement of intensity levels. The implementation of segmentation
approaches that employ dynamically varying thresholds based on iterative evaluation of
the labeling quality for each threshold value may provide a more efficient discrimination
between decay areas and noise artifacts with fully automated threshold selection. Towards
this direction, the Region Growing algorithm is considered next.

3.4. Region growing algorithm

The Region Growing Algorithm [19] starts with a high pass filtering of the image under
consideration (as in Section 3.1.1). Subsequently, all pixels with intensity values under the
median level are selected as seed pixels. A region is grown around a seed pixel by append-
ing its 4-connected neighbors that satisfy the following condition.

f ði; jÞ 6 ð1� tÞ F min þ F max

2
ð8Þ

where f(i, j) is the pixel being checked, Fmax and Fmin are the current maximum and mini-
mum intensities within the region being grown and t is a region growing tolerance param-
eter. The value of t is automatically derived for each segmented structure by repeating the
growth with multiple values of t in the interval [0.01,0.4]. The t-value that introduces the
least distance between labeled features from one step to the following is chosen as the opti-
mal tolerance value. The features studied are the centre of gravity of the segmented regions
and their size. Thus, the algorithm determines the value of t that results in minimal change
in the vector of two features with respect to the previous t value, by computing a normalized
distance between consecutive feature vectors. The Region Growing Algorithm guarantees
high detection accuracy, since it efficiently utilizes the local characteristics of the stone
background by considering the gray value variations on the neighborhood of seed pixels.

3.5. Conditional thickening operation

This algorithm is based on a process of fusing the results segmented by both the DoG
(Section 3.1.2) and Morphological detector (Section 3.1.2) and forms an accurate
approach for estimating both the topology and extent of degraded regions [15]. The fusion
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is performed by the conditional thickening operator, denoted by �, applied on a spot X

relative to Y with the pair of structuring elements (Mi1,Mi2) as follows:

ðMi1;Mi2Þ � XY ¼ Y \ X [ ðMi1HX Þ \ Mi2HX C
� �� �� �

ð9Þ

Thus, a spot X of the DoG detector is expanding up to the point that it reaches a neigh-
boring spot or until it reaches the size of a co-located spot Y detected by the morphological
operator. The pair of structuring elements Mi1 and Mi2 controls the direction of expan-
sion. To cover spatial expansion in many directions, we use eight pairs of such elements.
The first two pairs are given as:

ðM11;M12Þ ¼
1 1 1

0 0 0

0 0 0

2
64

3
75;

0 0 0

0 1 0

1 1 1

2
64

3
75

0
B@

1
CA and ðM21;M22Þ ¼

0 0 0

0 0 1

0 1 1

2
64

3
75;

0 0 0

1 1 0

0 1 1

2
64

3
75

0
B@

1
CA

The remaining pairs are obtained from these matrix combinations through rotations every
90�. Finally, the conditional thickening operator is obtained as a combination of individ-
ual results for every pair (Mi1, Mi2) as:

E ¼
[8
i¼1

ðMi1Mi2Þ � XY ð10Þ

The operator in Eq. (10) forms the core of the detection approach that employs the con-
ditional thickening operator to combine and fuse the results of two individual detectors.
For the decay areas, the patterns detected by the Gaussian detector are extended in space
but the result is always intersected with the spots detected by the morphological detector.
The intersection in each step preserves only spots that are collocated in both X (after
conditional thickening) and Y [15].
3.6. Ground truth extraction procedure

Further to detecting degraded patterns on stone surfaces, this paper also aims at assess-
ing the potential and the limitations of each algorithmic scheme. Towards this direction,
the determination of a Ground Truth Matrix of decay regions is critical, as it provides a
test bed for measuring the algorithms’ performance and comprehending the differences
among them on the segmentation procedure. In this work, we introduce a semi-automated
approach of extracting the Ground Truth Matrix. We first extract the decay areas consis-
tently detected by all algorithmic schemes examined. This process is considered in Section
3.6. Furthermore, the entire result is supervised and evaluated by the experts as explained
in Section 4.1.

Through the Ground Truth Extraction Approach, we check in pairs the areas seg-
mented by all algorithms. The procedure starts by labeling the segments detected by each
algorithmic approach. For a pair of segmented and labeled images, Fig. 1 illustrates the
processes of managing the non-overlapping and partially overlapping labels. The various
steps are presented in the following subsections.

This scheme is applied on the segmented images by each and every algorithm in an
incremental way, as to extract the Ground Truth Matrix of decay areas. In fact, at the
ith step of the process (i > 1) the input images involve the result of the algorithm Ai



Fig. 1. Flowchart illustrating the overlap extraction procedure.
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and the image representing the non-overlapping labels obtained from the (i � 1)th step of
this process.

3.6.1. Checking for overlapping labels

The Checking for Overlap aims at extracting overlapping regions detected by two dif-
ferent algorithms. The process initially checks whether a label detected by algorithm Ai is
also segmented by algorithm Aj. The areas derived by the Checking for Overlap step can
be sub-divided into three clusters. A label of Ai that does not overlap any label detected by
Aj is identified as Non-Overlapping label, while labels of Ai that either in part or fully over-
lap labels of Aj are considered as partially and totally overlapping labels, respectively. At
this point we should make clear that the aim of the Ground Truth Matrix Extraction is to
mark compact areas that correspond to susceptible degraded regions. Totally overlapping
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labels are included in the Ground Truth. Visual inspection reveals that the partially over-
lapping labels often correspond to larger in extent regions that became split. In an attempt
to segment the degraded regions as compact areas that represent decay patterns at their
actual size, we further process the partially overlapping patterns of Ai to attain total over-
lap to the labels of Aj.
3.6.2. Processing the partially overlapping labels

Through this procedure we consider the partially overlapping labels of Ai that are
obtained by the above process (3.6.1), in combination with the areas segmented by algo-
rithm Aj. Initially, the partially overlapping labels of algorithm Ai are blown via a condi-
tional thickening operator up to the point that they cover the entire corresponding label
segmented by Aj. The operator of thickening label Ai using a pair of structuring elements
E1, E2 is defined similar to Eq. (9) as:

ðE1;E2Þ � AiAj ¼ Ai \ Aj [ ðE1HAjÞ \ E2HAc
j

� �� �� �
ð11Þ

The segmented areas derived after processing the partially overlapping patterns are
labeled and treated similar to the total overlapping labels. Fig. 2 illustrates the algorithmic
procedure described above. The next step of the Ground Truth extraction approach
involves processing the Non-Overlapping Labels. The Ground Truth Matrix includes
all labels segmented by all or just some of the algorithms, recognizing the potential of
an algorithm’s failure in spot detection. Thus, even non-overlapping patterns between
two algorithms may actually be part of the Ground Truth of the problem.
3.6.3. Processing the non-overlapping patterns

The majority of non-overlapping labels correspond to areas small in extent appearing in
clusters, which may reflect the algorithms’ inability to reveal the entire extent of decay
areas, detecting only broken regions. To overcome these instances of over-segmentation,
Fig. 2. Check for overlap spots and processing the partially overlapping labels.
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a process of merging adjacent non-overlapping spots is developed. We initially start by
merging such areas detected in close distances.

3.6.3.1. Merging adjacent non-overlapping areas. The procedure starts by labeling all non-
overlapping areas and extracting the centroid of each label. Subsequently, we measure the
Euclidean distance between a label’s centroid to the centroids of its neighboring labels and
if the distance is lower than a predefined threshold TD, then the adjacent labels are merged.
In the current implementation, the distance threshold TD is chosen to reflect the mean
diameter value of all overlapping spots. After the process of merging the neighboring pat-
terns, the areas obtained are labeled again and the procedure illustrated in Fig. 2 is repeated
to check for new overlap. The next step involves measuring the cross-image distance
between the new non-overlapping areas and any areas detected by Aj at adjacent locations.

3.6.3.2. Merging according to a distance criterion. The non-overlapping labels provided by
the previous step are labeled and the centroid of each label is extracted. A window of size
31 · 31 is applied both at the centroid of the label in image Aj and at the corresponding co-
ordinates in image Ai. The label in the window defined in Ai is submitted to morphological
erosion (Dilates black spots) by a structuring element (disk). The morphological erosion is
iterated by increasing the radius by 1 at each iteration and terminates when either the label
in window Ai overlaps an existent label in window Aj or the radius value reaches an upper
bound. This procedure is repeated for each of the segmented areas and the radius values at
which the morphological operation terminates are used to calculate the median erosion
value. Subsequently, morphological erosion is performed on all original areas of Ai with
a disk-structuring element of the size of the median. Finally, the process in Fig. 2 is applied
again, to derive the new overlapping labels.

3.7. Evaluation measures

3.7.1. Receiver operating characteristic curves (ROC)

The segmentation of an image through an algorithmic approach, referred to as algorith-
mic segmentation (AS), is compared with the corresponding ground truth (GT) specification
as to account for instances of correct segmentation, under-segmentation, over-segmenta-
tion, missed regions, and noise regions. The definitions of metrics are based on the determi-
nation of overlap in terms of pixels commonly segmented in AS and GT. Based on this
comparison, we compute the instances of false positive (FP), false negative (FN), true posi-
tive (TP) and true negative (TN) segments.

In an attempt to illustrate the algorithms’ performances and their differences associated
to the segmentation procedure, the receiver operating characteristic (ROC) curves are
constructed [20–22]. The ROC curves are obtained by modifying the thresholds within
meaningful ranges and subsequently calculating instances of correct and incorrect segmen-
tation. As the thresholds are varied from lower (more strict) to higher (relaxed) values, the
number of instances of correct segmentation increases but the sensitivity of the algorithms
is reduced.

3.7.2. Tests of statistical significance

Further to evaluating the algorithms’ performances, we are also interested in investigat-
ing the significance of variations of decay patterns that are caused by the different natural
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conditions of exposure. Similar methodology can be followed in assessing differences in the
effectiveness of cleaning methods. The significance of such variations on the size of decay
patterns is assessed through the Mann–Whitney U test, while intensity variations are con-
sidered through t tests. For the former, we select a non-parametric rank sum test, since the
distribution of sizes departs significantly from the normal distribution. Regarding intensity
comparisons, the t tests are employed after assessing that intensities on decay areas obey
the normal distribution. In order to increase the size of the test set, each of the studied
images is divided into six sub-blocks of equal size and the tests are performed in the
sub-blocks areas.

3.7.2.1. t Tests [23,24]. Through the t test, the statistical parameters in concern include the
mean intensity and its standard deviation for each population tested. Test sets are
obtained for each sub-block of the same type and all segmented areas are subsequently
used to calculate the t-statistic:

t ¼ M1 �M2

s
ffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

q ð12Þ

where s is an estimate of the standard deviation based on both sample populations and n1

and n2 are the numbers of observations within each group. Thus,

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þ � std1 þ ðn2 � 1Þ � std2

n1 þ n2 � 2

s
ð13Þ

where std1 and std2 denote the standard deviations measured in the populations 1 and 2,
respectively, with

degrees of freedomðdfÞ ¼ n1 þ n2 � 2 ð14Þ
3.7.2.2. Mann–Whitney U test [23,25]. The implementation of the Mann–Whitney U test
proceeds as follows, given two population groups:

1. List the observations in order of magnitude within each group. Assign ascending ranks
to the entire set of observations with repeated values, called ‘ties’, given the mean of the
ranks within that run.

2. Sum the ranks of each population RARB.
3. Calculate UA and UB, e.g., UA = {nA(nA + 1)/2 + (nAnB)}-RA where nA and nB are the

number of samples in each group; UB is similarly computed.
4. Enter the smallest of UA and UB to the statistical table. Values of U lower than the

tabulated value of significance indicate significant differences between the populations.

4. Results

This work initially validates the potential and the limitations of each of the recruited
algorithms in effectively determining the topology and extent of decay patterns. A second
objective is to study the size and relative intensities (over the background) of degraded
areas as representative measures of the severity of degradation. In order to assess whether
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significant differences occur between decay patterns segmented on various surfaces, statis-
tical tests are first employed on intensity distributions to examine the darkness of corroded
areas over the background. Furthermore, tests of statistical significance are also used to
evaluate differences on decay patterns’ sizes associated to the exposure conditions or the
cleaning state of the stone material. As a side effect, these tests contribute to comprehend-
ing the mechanisms and the efficiency of chemical cleaning, as well as to understanding the
formation of crusts.
4.1. Visual evaluation of the ground truth matrixes

The images used to extract the Ground Truth Matrix are selected by the experts as to
closely represent the surfaces studied throughout this work. More specifically, we evaluate
the Ground Truth on three surfaces: (a) an untreated sheltered fluting monitored by FOM
(Fig. 3), (b) an untreated unsheltered fluting also monitored by FOM (Fig. 4) and (c) a
stone surface depicting the successive co-existence of treated and untreated strips moni-
tored by a Digital Camera (Fig. 5). In any case, the number of decay patterns detected
Fig. 3. (a) Stone specimen located on a column’s fluting at sheltered surface (as monitored by the FOM
(magnification ·50)), (b) the derived Ground truth Matrix overlaid on the original image.

Fig. 4. (a) Stone specimen located on column’s fluting at unsheltered surface (as it was monitored by the FOM
system (magnification ·50)), (b) the derived Ground truth Matrix overlaid on the original image.



Fig. 5. (a) Stone surface monitored by the digital camera, (b) the derived Ground truth Matrix overlaid on the
original image.
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in each image is quite large as to form a quite valid statistical set for algorithmic compar-
isons As mentioned before, the extraction and validation of GT matrix is performed in two
steps: (i) extraction of GT matrix based on the algorithmic results of several algorithms
(Section 3.3), and (ii) validation of the GT matrix through inspection by experts.
Fig. 3(a) depicts a surface of rapidly varying stone structure (untreated sheltered fluting).

According to the experts’ judgment, the GT approaches quite effectively the topology of
degraded areas. Moreover, the segmented corrosion patterns are large in extent marking
extensive susceptible areas. Fig. 4 illustrates the ground truth matrix extracted on an image
depicting an unsheltered untreated fluting.

Observing in parallel the GTs illustrated in Figs. 3 and 4 we may assess that the seg-
mented areas are larger in extent in the case of the sheltered untreated fluting (Fig. 3). This
conclusion is in accordance with the experts’ judgment concerning the corrosion state
encountered on sheltered and unsheltered surfaces. Finally, in order to provide a visual
inspection of the Ground Truth matrix for the case of digital camera images we illustrate
in Fig. 5 the original image as well as the Ground Truth Matrix.

Fig. 5(a) depicts a stone surface partially cleaned by a Nd:YAG laser cleaning. In the
stone material, we observe the co-occurrence of successive cleaned and un-cleaned strips.
According to the experts’ estimation, the ground truth matrix has effectively determined
the presence of degradation particles.

At this point, we should make clear that the objective of our detection processes is not
to segment areas of intensity alteration induced by corrosion damage, but rather to deter-
mine the individual decay patterns appearing within any background structure (corroded
or cleaned), which lead to the formation of black crusts beyond the color alteration effects.
This applies especially for Fig. 5 where segmentation does not aim to distinguish cleaned
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from corroded areas but to detect decay patterns on each of these areas. The presence of
small in extent regions is limited in the GT image in Fig. 5(b). This is explained by the fact
that the digital camera provides low-resolution levels and thus the segmentation proce-
dures are mainly based on large scale intensity alterations and do not require high sensi-
tivity or adaptation.

4.2. Evaluating the algorithms’ performance through ROC curves

In this paper, we consider the ROC curves as robust measures for evaluating the algo-
rithms’ performance. Throughout this subsection, we thoroughly discuss the performance
curves derived for each of the GTs separately.

4.2.1. Algorithms’ performance on unsheltered untreated fluting
Initially we study the algorithms’ performance in the case of the unsheltered untreated

fluting. From Fig. 6 it can be concluded that the Conditional Thickening Algorithm dem-
onstrates better performance (top curve) in detecting decay patterns at their real extent,
while the Region Growing follows in performance. At this point it should also become
clear that the above approach of determining the specificity and sensitivity of algorithms
Fig. 6. ROC curves depicting the performance of the implemented algorithms in the case of the unsheltered
untreated fluting (illustrated in Fig. 4).
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is more focused towards the accurate detection of patterns’ size, since the comparison of
results with the GT targets exactly this aspect. Thus, it is expected that approaches with
tendency of splitting the decayed areas, such as the methods of Adaptive Thresholding
(Section 3.2), Sub-Region Decomposition and DoG, will demonstrate worse performance.
By observing Fig. 6 we can also deduct that the adaptive thresholding algorithmic schemes
(Section 3.1.3) tend to perform better than the High pass Filtering Algorithm for low val-
ues of sensitivity. This means that the former introduce less FP and FN areas when more
strict thresholds are applied. Thus, it further reflects the potential of adaptive thresholding
techniques in accurately segmenting decay spots in non-homogeneous background. A fur-
ther assessment that can be drawn by the above figure is that the DoG detector appears to
be inefficient. This is explained by its tendency to split the detected areas resulting in the
segmentation of many spots reduced in size. Finally, regarding the Region Growing Algo-
rithm, a remarkable point is that for specificity values >0.85 (1 � specificity <0.15) it seems
less efficient than the other techniques, while for specificity values <0.85 its performance
becomes better. Visual inspection of the segmentation results reveal that FPs generally cor-
respond to small in extent and isolated areas. Their spatial arrangement is assessed by the
authors, but not presented here, through measuring the mean of the minimum Euclidean
inter-particle distance.

4.2.2. Algorithms’ performance on sheltered untreated fluting

In this section, we illustrate the algorithms’ performance in the case of a surface dem-
onstrating a rapidly varying background structure. Fig. 7 depicts the algorithms’ perfor-
mance through the ROC curves.

Fig. 7 reveals that the Conditional Thickening and the Region Growing algorithms
perform better than the others for specificity levels <0.35. The adaptive thresholding
schemes appear to have similar responses as the high-pass filtering and the sub-region
decomposition algorithms. The DoG detector, though, demonstrates a consistent worse
performance. In an effort to compare the algorithms’ performances as they are depicted
in Figs. 6 and 7, we can see that all the algorithms, except for the Conditional Thickening
and the Region Growing Algorithms, seem to be more efficient when applied to images
depicting texture variations (Fig. 7). This effect can be explained by considering that decay
spots on homogeneous surfaces usually correspond to areas of low contrast to the back-
ground while the opposite occurs on in-homogeneous surfaces. Thus, for the latter case the
topology of decay patterns may be approached even by effective strict thresholding
schemes. Regarding the Conditional Thickening and the Region Growing Algorithms
we can state that they respond in almost the same way when applied to surfaces depicting
homogeneous and in-homogeneous structures. Both algorithms demonstrate a slightly
better performance in the case of inhomogeneous background, for specificity values
around the mean of the range. This ability to provide similar accuracy when handling
surfaces of different texture characteristics reflects their potential to perform efficient
detection irrespective of noise levels and variations over the background.

Another important point is the response of the Adaptive Thresholding schemes (Section
3.1.3). It has been shown that for small values of specificity, these algorithms perform
better on the sheltered untreated flutings (Fig. 7) compared to the unsheltered ones
(Fig. 6). This is expected because texture in-homogeneities induce outliers on the histo-
gram of the studied surfaces. Thus, susceptible areas can be segmented even by less
strict thresholds. In contrast, when operating on images of smoother background, the



Fig. 7. ROC curves depicting the performance of the implemented algorithms in the case of the sheltered
untreated fluting (illustrated in Fig. 3).
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adjustment of low thresholds simply causes the segmentation of large compact areas that
do not always correspond to susceptible regions.
4.2.3. Algorithms’ performance on digital camera images
Further to validating the algorithms’ efficiency in segmenting decay areas on FOM

images, we also investigate their potential in determining corrosion effects on surfaces
screened by other imaging modalities (digital camera system). Such responses are also
evaluated through the ROC curves.

In Fig. 8 we can observe that the HighPass Filtering Algorithm can detect decay effects
quite effectively. This is expected considering the low-resolution provided by the digital
camera. In this case of low detail, a global processing algorithm can provide quite accurate
results. The Conditional Thickening and the Region Growing algorithms demonstrate
poorer performance than the High-Pass Filtering. Furthermore we can observe that all
the algorithms’ performances tend to converge for specificity <0.5.
4.3. Evaluation of the effects of structural and cleaning conditions

The design structure of artwork has direct implications to the exposure of its various
surfaces (flutings, readings, etc.) to environmental conditions and also affects the efficiency
of cleaning. Furthermore, different cleaning methods differ in their efficiency of removing
degradation from such surfaces, but the effectiveness of cleaning is very difficult to be



Fig. 8. ROC curves depicting the performance of the implemented algorithms for the stone material monitored
via the digital camera (illustrated in Fig. 5).
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quantified and compared by just human inspection. In this section, we investigate the
effects of exposure and/or cleaning conditions on the size and the relative intensities (over
the background) of the detected corrosion defects. After the segmentation process, two
features, i.e. the extent and relative intensity of each decay region are measured. The
statistical tests employed, aim at assessing whether or not decay patterns encountered
on surfaces of various exposure and/or cleaning states are characterized by feature values
belonging to different populations. Through this analysis, we recruit the three segmenta-
tion algorithms that perform best (according to the ROC curves), namely the Conditional
Thickening, the Region Growing and the Sub-Region Decomposition algorithm.

4.3.1. t Tests for intensity distributions

We introduce t tests to estimate whether the cleaning state and/or the exposure condi-
tions of the stone material are indeed reflected on the relative intensities (over the back-
ground) of the corroded areas. According to the experts, the darkness at the locations
of decay particles is closely related to the crusts’ thickness on these areas, as crusts of
greater thickness absorb larger amounts of illumination. An accurate metric of darkness
is the relative intensity of pixels within degraded areas over the background. Prior to
the application of the t tests the set of images is submitted to intensity normalization to
eliminate the effects of different luminance conditions. Table 1 presents and compares
the results after the application of t tests on the studied surfaces; the results of the chemical
analysis of the studied surfaces are also reported.



Table 1
Comparative study on the significance of intensity alterations

Conditional
thickening

Sub-region
decomposition

Region growing

1. Sheltered flutings
(Ds) (vs.) Sheltered
flutings (Diagn.)

Df = 34 Df = 34 Df = 34
t = 25.764 t = 22.187 t = 24.478
Critical t (1-tail) = 1.691 Critical t (1-tail) = 1.691 Cr.t(1-tail) = 1.691

2. Sheltered flutings
(WMB) (vs.)
Sheltered flutings
(Diagn.)

Df = 33 Df = 32 Df = 32
t = 62.410 T = 63.829 t = 59.279
Critical t (1-tail) = 1.692 Critical t (1-tail)= 1.694 Critical t (1-tail)= 1.694

3. Sheltered flutings
(BP) (vs.) Sheltered
flutings (Diagn.)

Df = 27 Df = 28 Df = 28
t = 33.899 t = 40.619 t = 36.787
Critical t (1-tail) = 1.703 Critical t (1-tail) = 1.701 Critical t (1-tail) = 1.701

4. Sheltered reedings
(Ds) (vs.) Sheltered
reedings (Diagn.)

Df = 9 Df = 10 Df = 10
t = 12.591 t = 14.021 t = 13.712
Critical t (1-tail) = 1.833 Critical t (1-tail) = 1.812 Critical t (1-tail) = 1.812

5. Sheltered reedings
(BP) (vs.) Sheltered
reedings (Diagn.)

Df = 8 Df = 10 Df = 10
t = 12.716 t = 18.321 t = 14.436
Critical t (1-tail)= 1.860 Critical t (1-tail) = 1.812 Critical t (1-tail) = 1.812

6. Sheltered reedings
(Diagn.) (vs.)
Sheltered flutings
(Diagn.)

Df = 28 Df = 22 Df = 28
t = 13.443 t = 13.388 t = 10.148
Critical t (1-tail) = 1.701 Critical t (1-tail) = 1.717 Critical t (1-tail) = 1.701

7. Unsheltered flutings
(Diagn.) (vs.)
Sheltered flutings
(Diagn.)

Df = 34 Df = 34 Df = 34
t = 47.960 t = 31.016 t = 4 1.429
Critical t (1-tail) = 1.691 Critical t (1-tail) = 1.691 Critical t (1-tail) = 1.691

8. Unsheltered flutings
(DS) (vs.)
Unsheltered flutings
(Diagn.)

Df = 22 Df = 22 Df = 22
t = 7.749 t = 12.089 t = 10.765
Critical t (1-tail) = 1.717 Critical t (1-tail) = 1.717 Critical t (1-tail) = 1.717

9. Unsheltered flutings
(Diagn.) (vs.)
Sheltered reedings
(Diagn.)

Df = 16 Df = 16 Df = 16
t = 16.347 t = 18.940 t = 16.487
Critical t (1-tail) = 1.746 Critical t (1-tail) = 1.746 Critical t (1-tail) = 1.746

10. Unsheltered reedings
(Diagn.) (vs.)
Unsheltered flutings
(Diagn.)

Df = 22 Df = 22 Df = 22
t = 4.575 t = 6.799 t = 4.090
Critical t (1-tail) = 1.717 Critical t (1-tail) = 1.717 Critical t (1-tail) = 1.717

11. Unsheltered reedings
(Ds) (vs.)
Unsheltered reedings
(Diagn.)

Df = 9 Df = 10 Df = 10
t = 7.576 t = 8.401 t = 7.004
Critical t (1-tail) = 1.833 Critical t (1-tail) = 1.812 Critical t (1-tail) = 1.812

12. Unsheltered reedings
(WMB) (vs.)
Unsheltered reedings
(Diagn.)

Df = 9 Df = 10 Df = 10
t = 8.42 1 = 11.63 t = 7.770
Critical t (1-tail) = 1.833 Critical t (1-tail) = 1.812 Critical t (1-tail) = 1.812
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Table 1 (continued)

Conditional
thickening

Sub-region
decomposition

Region growing

13. Unsheltered
reedings (Diagn.)
(vs.) Sheltered
reedings (Diagn.)

Df = 16 Df = 16 Df = 16
t = 25.223 t = 30.958 t = 15.972
Critical t (1-tail) = 1.746 Critical t (1-tail) = 1.746 Critical t (1-tail) = 1.746
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According to the statistics setup of the test, t-values that are greater than the critical ‘t’
value reflect a corresponding difference in the mean values of the examined populations.
Through the tested hypotheses, we aim at assessing the occurrence of differences between
the studied samples. As null hypotheses we always state that the first of the populations
has a distribution of intensity values laid on lower levels, while the alternative hypotheses
state the opposite. To perform such a test, where the rejection region corresponds to the
largest values, we employ one-tailed statistical test. When the t-value is much larger than
the critical t, then the null hypothesis is rejected in favor of the alternative hypothesis of
different distributions.

The conclusions drawn through the data presented in Table 1 reveal that the applica-
tion of cleaning interventions results in increasing the intensity levels of the remaining
corroded areas. This effect holds true for all cleaning methods. In particular, the corroded
areas detected on surfaces cleaned by DS appear to be darker than decay spots segmented
on surfaces treated by other cleaning processes (Table 1). This finding is in accordance
with the results of the chemical analyses indicating that the DS cleaned areas still contain
aluminosilicates and gypsum relevant to the presence of black particles (see Table 1). This
has also theoretical relevance, since most sheltered surfaces are associated with higher
amounts of decay products, such as gypsum, aluminosilicates, nitrates and organic
compounds. A similar effect is observed when comparing surface segments at different
structural position of the stonework. More specifically, decay patterns segmented on shele-
tered flutings are darker than the corresponding patterns detected on sheltered reedings.
An effort to investigate whether a similar observation is also valid for the unsheleterd areas
revealed that the observed difference on the relative intensity values, is only marginally
significant. This conclusion also agrees to the chemical analysis.

Through Table 1 we can draw important conclusions regarding the algorithmic
responses. Thus, we can observe that the sub-Region Decomposition algorithm provides
results demonstrating discrepancies from the results derived by the other two algorithms.
This is mainly caused by the fact that it tends to split areas segmented as compact by the
other algorithms. Thus, such a behavior affects the distribution of intensities.
4.3.2. Mann–Whitney U test for size distributions

Through the Mann–Whitney U test we aim at investigating whether an association
between the corrosion state and the size of decay patterns can be established. The employ-
ment of the specific statistical test was decided because, according to our observations, the
distribution of segments sizes departs significantly from the normal distribution. Table 2
summarizes the results of the Mann–Whitney U test when applied on the studied surfaces.

The hypotheses tested in this approach are quite similar to those tested in the t tests.
Thus, at null hypotheses we assume that decay areas belonging to the first population



Table 2
Comparative study on the significance of decay patterns size alterations

Conditional
thickening

Region growing Sub-region
decomposition

1. Sheltered flutings (Diagn.) (vs.) Sheltered
flutings (Ds)

N1 = 24,
N2 = 12

N1 = 24,
N2 = 12

N1 = 24, N2 = 12

U = 252,
Ucrit = 74

U = 288,
Ucrit = 74

U = 288,
Ucrit = 74

p = 5.92 · 10�5 p = 7.98 · 10�10 p = 7.98 · 10�10

2. Sheltered flutings (Diagn.) (vs.) Sheltered
flutings (WMB)

N1 = 24, N2 = 6 N1 = 24,
N2 = 10

N1 = 24, N2 = 18

U = 144,
Ucrit = 27

U = 288,
Ucrit = 74

U = 432,
Ucrit = 124

p = 1.68 · 10�6 p = 7.98 · 10�10 p = 10�6

3. Sheltered flutings (Diagn.) (vs.) Sheltered
flutings (BP)

N1 = 24, N2 = 6 N1 = 24, N2 = 6 N1 = 24, N2 = 6
U = 144,
Ucrit = 27

U = 144,
Ucrit = 27

U = 144,
Ucrit = 27

p = 1.68 · 10�6 p = 1.68 · 10�6 p = 1.68 · 10�6

4. Sheltered reedings (Diagn.) (vs.) Sheltered
reedings (DS)

N1 = 6, N2 = 6 N1 = 6, N2 = 6 N1 = 6, N2 = 6
U = 36, Ucrit = 3 U = 36,

Ucrit = 3
U = 36, Ucrit = 3

p = 10.8 · 10�4 p = 10.8 · 10�4 p = 10.8 · 10�4

5. Sheltered reedings (Diagn.) (vs.) Sheltered
reedings (BP)

N1 = 6, N2 = 6 N1 = 6, N2 = 6 N1 = 6, N2 = 6
U = 36, Ucrit = 3 U = 36,

Ucrit = 3
U = 36, Ucrit = 3

p = 10.8 · 10�4 p = 10.8 · 10�4 p = 10.8 · 10�4

6. Sheltered flutings (Diagn.) (vs.) Sheltered
reedings (Diagn.)

N1 = 24, N2 = 6 N1 = 24, N2 = 6 N1 = 24, N2 = 6
U = 0, Ucrit = 27 U = 18,

Ucrit = 27
U = 18, Ucrit = 27

p = 1.68 · 10�6 p = 16.7 · 10�4 p = 16.7 · 10�4

7. Sheltered flutings (Diagn.) (vs.) Unsheltered
flutings (Diagn.)

N1 = 24,
N2 = 12

N1 = 24,
N2 = 12

N1 = 24, N2 = 12

U = 218,
Ucrit = 74

U = 218
Ucrit = 74

U = 252,
Ucrit = 74

p = 7.98 · 10�10 p = 7.98 · 10�10 p = 5.92 · 10�5

8. Unsheltered flutings (Diagn.) (vs.) Unsheltered
flutings (Ds)

N1 = 12,
N2 = 12

N1 = 12,
N2 = 12

N1 = 12, N2 = 12

U = 144,
Ucrit = 31

U = 144,
Ucrit = 31

U = 127,
Ucrit = 31

p = 3.69 · 10�7 p = 3.69 · 10�7 p = 4.28 · 10�4

9. Sheltered reedings (Diagn.) (vs.) Unsheltered
flutings (Diagn.)

N1 = 6, N2 = 12 N1 = 6, N2 = 12 N1 = 6, N2 = 12
U = 62, Ucrit = 9 U = 55,

Ucrit = 9
U = 54, Ucrit = 9

p = 6.7 · 10�3 p = 4.1 · 10�2 p = 5.1 · 10�2

10. Unsheltered flutings (Diagn.) (vs.) Unsheltered
reedings (Diagn.)

N1 = 12, N2 = 6 N1 = 12, N2 = 6 N1 = 12, N2 = 6
U = 72, Ucrit = 9 U = 72,

Ucrit = 9
U = 65, Ucrit = 9

p = 5.38 · 10�5 p = 5.38 · 10�5 p = 2.3 · 10�3
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Table 2 (continued)

Conditional
thickening

Region
growing

Sub-region
decomposition

11. Unsheltered reedings (Diagn.) (vs.) Unsheltered
reedings (Ds)

N1 = 6, N2 = 6 N1 = 6, N2 = 6 N1 = 6, N2 = 6
U = 24, Ucrit = 3 U = 24,

Ucrit = 3
U = 26, Ucrit = 3

p = 0.19 p = 0.19 p = 0.12

12. Unsheltered reedings (Diagn.) (vs.) Unsheltered
reedings (WMB)

N1 = 6, N2 = 6 N1 = 6, N2 = 6 N1 = 6, N2 = 6
U = 36, Ucrit = 3 U = 31,

Ucrit = 3
U = 36, Ucrit = 3

p = 10.8 · 10�4 p = 2.05 · 10�2 p = 10.8 · 10�4

13. Sheltered reedings (Diagn.) (vs.) Unsheltered
reedings (Diagn.)

N1 = 6, N2 = 6 N1 = 6, N2 = 6 N1 = 6, N2 = 6
U = 36, Ucrit = 3 U = 36,

Ucrit = 3
U = 36, Ucrit = 3

p = 10.8 · 10�4 p = 10.8 · 10�4 p = 10.8 · 10�4
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are smaller in extent than the corresponding areas of the second population. The contro-
versial assumption is stated as alternative hypothesis. To prove or disprove the tested
hypotheses we use one-sided statistical test. Thus, whether the U-value is much greater
than the critical U, the null hypothesis is rejected in favor of the alternative hypothesis.

Through the results reported in Table 2 it is obvious that the cleaning methods attain to
eliminate the size of corrosion patterns. This observation is valid for almost all tests,
except for the case where unsheltered reedings are cleaned by the DS method. This sup-
ports the conclusions derived by the chemical analysis [26,27] according to which DS
performs mild cleaning. Therefore, is preferable for the cleaning of unsheltered reedings
with flaws and texture irregularities, which demand cleaning methods that minimize mate-
rial loss. Another objective of this test is to elucidate whether the different conditions of
exposure affect the size of the segmented decay areas. According to the results obtained,
the black particles detected on sheltered flutings are always larger than the corresponding
spots detected on any other of the studied surfaces. In general, decay patterns larger in
extent are encountered on sheltered untreated areas. This is expected because crusts of
greater thickness prevail there. Comparing the size of decay patterns occurring on reedings
and flutings, we can state that decay areas of larger size occur on sheltered flutings. A
similar assessment can also be drawn for the unsheltered areas. However, the difference
is less significant.

Aiming at investigating whether the results derived by the algorithmic approaches
indeed converge with the assessments obtained by chemical analyses we also present the
composition results of Table 3. As it can be seen, more severe degradation occurs to
untreated surfaces and column flutings. This is reflected on the higher concentration of
aluminosilicates and gypsum prevailing on such surfaces. In particular, aluminosilicates
contribute significantly to the darkness of degraded areas. This effect further exemplifies
the results provided by the t tests, which indicate that the depth of deterioration is closely
associated with the darkness of corroded areas. Furthermore, the data provided in Table 3
support the conclusions extracted by Tables 1 and 2. More specifically, chemical analyses
revealed that untreated areas and sheltered column flutings generally preserve higher
concentrations of decay products. Such assessments are also expressed in the statistical
tests employed in this work (Tables 1 and 2), which verify that decay areas segmented



Table 3
Results provided by the chemical analysis of the studied surfaces

Diagnosis DS BP WMB

Sheltered
flutings

Gypsumb, calcitec,
oxalatese

Calcitea, aluminosilicatesf,
gypsume, oxalatese

Calcitea, oxalatese,
gypsume

Calcitea, oxalatese,
gypsumf

Chemical
analyses

Aluminosilicatesd,
nitratese

Sheltered
reedings

Calcitea, gypsumd,
aluminosilicatesd

Calcitea, oxalatese,
gypsumf

Calcitea, gypsumd,
aluminosilicatese,
oxalateseChemical

analyses
Oxalatese

Unsheltered
flutings

Calciteb,
aluminosilicatesd,
gypsumd

Calcitea,
aluminosilicatesd,
organic compoundse

Chemical
analyses

Oxalatese, organic
compoundse

Unsheltered
reedings

Calciteb,
aluminosilicatese,
gypsumd

Calcitea,
aluminosilicatese,
organic compoundse

Calcitea,
aluminosilicatese,
organic compoundse

Chemical
analyses

Oxalatese, baritee,
organic
compoundse

a >75%.
b 50–75%.
c 20–50%.
d 5–20%.
e <1–5%.
f <1% (traces).
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on surfaces of more severe degradation are characterized by lower distribution of intensity
values and larger sizes (due to the larger spatial density of decay patterns induced by their
higher concentrations).

5. Remarks and conclusions

In this study, we implemented and tested several image segmentation algorithms with
the objective to systematically address the estimation of both the size and topology of
degraded areas due to corrosion on stonework. At a subsequent step we also implemented
an automated process of defining the Ground Truth matrix and assessing the performance
and differences between the segmentation procedures. According to the derived results the
Conditional Thickening and the Region Growing Algorithms seem to approach better the
detection problem, while the Sub-Region Decomposition and the Adaptive Thresholding
schemes follow. A significant result obtained from the performance analysis is that the
algorithms’ responses differ when processing the digital camera image. In this case, a
simple broadband high-pass filtering technique seems to provide quite accurate results.
A further significant observation involves the discernibility of the algorithmic approaches
to segment decay spots in in-homogenous regions. According to the ROC curves, all detec-
tion schemes, except for the Conditional Thickening and the Region Growing, demon-
strate a greater efficiency to segment decay spots in rapidly varying backgrounds.
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Moreover, the t tests and the Mann–Whitney U test studied how the cleaning and the
structural state are reflected onto the size of decay areas and their relative intensities over
the background. These statistical tests revealed that the cleaning methods attain to reduce
significantly the size of the segmented decay areas. It is verified that larger in extent decay
areas were detected on sheltered surfaces than on unsheltered, as a result of the pollutant
accumulation. Regarding the relative intensities of corroded areas over the background, it
was revealed that cleaning attained to sufficiently reduce the darkness of the remaining
degraded areas. The DS cleaning attains to reduce the darkness of corroded areas, how-
ever, they consistently appear darker than decay areas remained after cleaning with the
other treatments. Darker decay regions prevail on sheltered untreated flutings, while shel-
tered untreated reedings and unsheltered untreated flutings follow in severity of degrada-
tion. Tests of statistical significance were conducted on decay areas segmented by the three
most efficient algorithms. A noteworthy point in this study is the significant convergence
between the results of the tested algorithmic schemes. Slight deviations can only be
observed in the case of the sub-region decomposition algorithm. These are mainly caused
by its tendency to split the segmented regions.

The implementation of machine vision techniques to aid the evaluation of corrosion
damage is a challenging issue of particular importance, as it enables non-destructive diag-
nosis and reduces the diagnosis effect. This work verifies that automated detection schemes
contribute to effectively and objectively diagnosing the decay state and reliably evaluating
the potential of cleaning approaches. Future research efforts should be focused towards
corrosion damage classification according to decay patterns origin and/or type (flaws,
material loss, black crusts). Such approaches require thorough analysis of macroscopical
images. These classification results along with other criteria posed by the experts can be
subsequently used for the development of information systems able to generate integrated
descriptions of the studied surfaces and their degradation mechanisms, as well as to sup-
port the retrieval of images depicting similar corrosion effects.
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